ON Semiconductor

Is Now

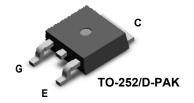
To learn more about onsemi™, please visit our website at www.onsemi.com

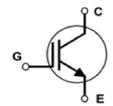
onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

ON Semiconductor®

FGD4536 360 V PDP Trench IGBT

Features


- · High Current Capability
- Low Saturation Voltage: V_{CE(sat)} = 1.59 V @ I_C = 50 A
- · High Input Impedance
- · Fast Switching
- · RoHS Compliant


Applications

• PDP TV, Consumer Appliances

Using novel trench IGBT technology, ON Semiconductor's new series of trench IGBTs offer the optimum performance for consumer appliances and PDP TV applications where low conduction and switching losses are essential.

Absolute Maximum Ratings

Symbol	Description		Ratings	Unit
V _{CES}	Collector to Emitter Voltage		360	V
V _{GES}	Gate to Emitter Voltage		± 30	V
I _{C pulse(1)*}	Pulsed Collector Current	@ T _C = 25°C	220	А
P _D	Maximum Power Dissipation	@ T _C = 25°C	125	W
	Maximum Power Dissipation	@ T _C = 100°C	50	W
T _J	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
T _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JC}(IGBT)$	R _{0JC} (IGBT) Thermal Resistance, Junction to Case		1.0	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	-	62.5	°C/W

Notes

(1) Half Sine Wave, D < 0.01, pluse width < 1μ sec

^{*} Ic_pluse limited by max Tj

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FGD4536	FGD4536TM	TO252(D-PAK)	380 mm	16 mm	-
FGD4536	FGD4536TM-F065	TO252(D-PAK)	380 mm	16 mm	-

Electrical Characteristics of the IGBT $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	eteristics					
BV _{CES}	Collector to Emitter Breakdown Voltage	V_{GE} = 0V, I_{C} = 250 μ A	360	-	-	V
$\frac{\Delta BV_{CES}}{\Delta T_{J}}$	Temperature Coefficient of Breakdown Voltage	V _{GE} = 0V, I _C = 250 μA	-	0.4	-	V/ºC
I _{CES}	Collector Cut-Off Current	V _{CE} = V _{CES} , V _{GE} = 0 V	-	-	100	μА
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}$, $V_{CE} = 0 V$	-	-	±400	nA
On Charac	teristics					
V _{GE(th)}	G-E Threshold Voltage	I _C = 250 μA, V _{CE} = V _{GE}	2.4	3.3	4.0	V
V _{CE(sat)} Collector to Em	-	I _C = 20 A, V _{GE} = 15 V	-	1.19	-	V
	Collector to Emitter	I _C = 30 A, V _{GE} = 15 V	-	1.33	-	V
	Saturation Voltage	I _C = 50 A, V _{GE} = 15 V, T _C = 25°C	-	1.59	1.8	V
		I _C = 50 A, V _{GE} = 15 V, T _C = 125°C	-	1.66	-	٧
Dynamic C	Characteristics					
C _{ies}	Input Capacitance	V _{CE} = 30 V, V _{GE} = 0 V,	-	1295	-	pF
C _{oes}	Output Capacitance		-	56	-	pF
C _{res}	Reverse Transfer Capacitance	f = 1 MHz	-	43	-	pF
Switching	Characteristics		·			
t _{d(on)}	Turn-On Delay Time		_	5	-	ns
t _r	Rise Time	V_{CC} = 200 V, I_{C} = 20 A, R_{G} = 5 Ω , V_{GE} = 15 V, ResistiveLoad, T_{C} =25°C	-	20	-	ns
t _{d(off)}	Turn-Off Delay Time		-	41	-	ns
t _f	Fall Time		-	182	-	ns
t _{d(on)}	Turn-On Delay Time	$V_{CC} = 200 \text{ V}, I_{C} = 20 \text{ A},$ $R_{G} = 5 \Omega, V_{GE} = 15 \text{ V},$ Resistive Load, $T_{C} = 125^{\circ}\text{C}$	-	5	-	ns
t _r	Rise Time		-	21	-	ns
t _{d(off)}	Turn-Off Delay Time		-	43	-	ns
t _f	Fall Time		-	249	-	ns
Qg	Total Gate Charge	V ₀ = 200 V I ₀ = 20 Δ	-	47	-	nC
Q _{ge}	Gate to Emitter Charge	$V_{CE} = 200 V_{,} I_{C} = 20 A,$ $V_{GE} = 15 V$	-	5.4	-	nC
Q _{gc}	Gate to Collector Charge		-	15	-	nC

Figure 1. Typical Output Characteristics

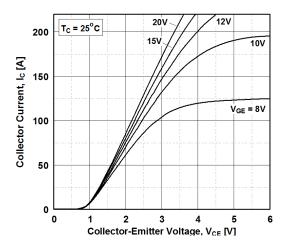


Figure 3. Typical Saturation Voltage Characteristics

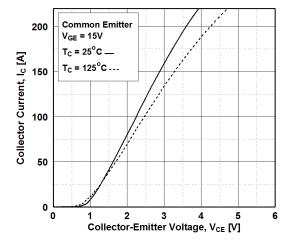


Figure 5. Saturation Voltage vs. V_{GE}

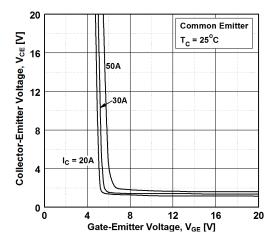


Figure 2. Typical Output Characteristics

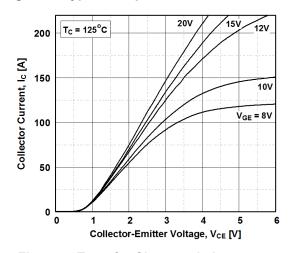


Figure 4. Transfer Characteristics

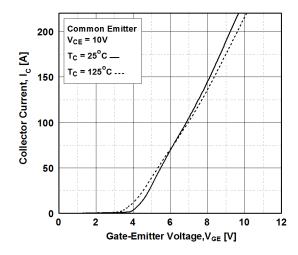


Figure 6. Saturation Voltage vs. V_{GE}

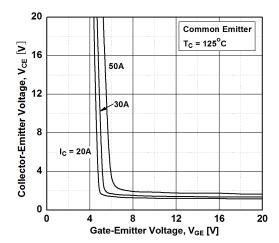
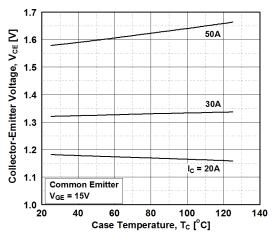



Figure 7. Saturation Voltage vs. Case
Temperature at Variant Current Level

Figure 8. Capacitance Characteristics

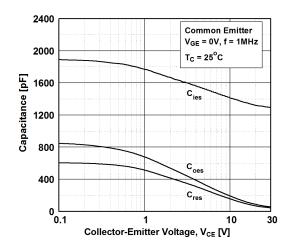


Figure 9. Gate charge Characteristics

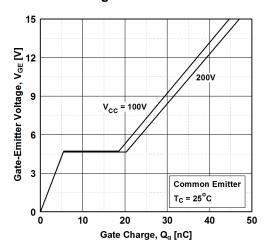
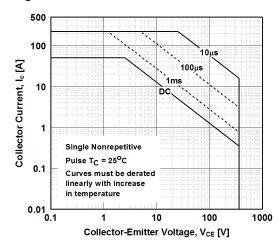



Figure 10. SOA Characteristics

Fgure 11. Turn-on Characteristics vs.
Gate Resistance

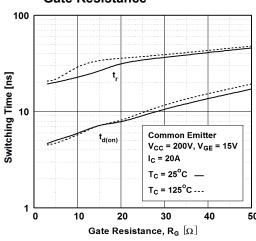


Figure 12. Turn-off Characteristics vs.
Gate Resistance

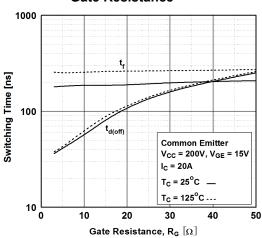


Figure 13. Turn-on Characteristics vs. Collector Current

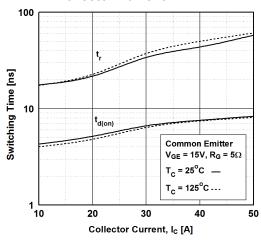


Figure 14. Turn-off Characteristics vs. Collector Current

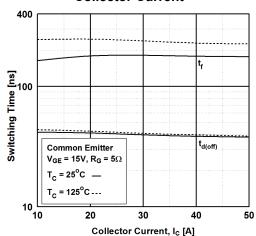


Figure 15. Switching Loss vs. Gate Resistance

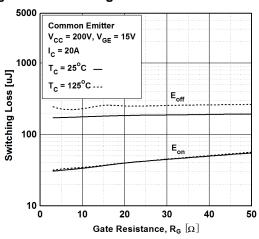


Figure 16. Switching Loss vs. Collector Current

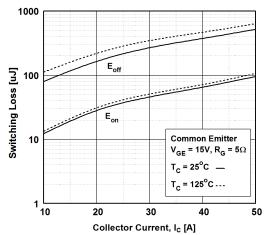


Figure 17. Turn off Switching SOA Characteristics

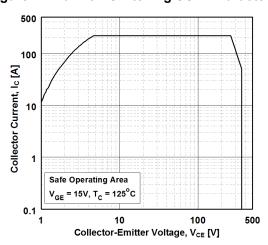



Figure 18.Transient Thermal Impedance of IGBT

Mechanical Dimensions A 6.00 MIN-MIN 6.50 1.02 MAX C 3.00 MIN (0.59)1.40 MIN-2.30 0.89 2.29 0.25(M) A(M) C 4.60 4.57 LAND PATTERN RECOMMENDATION SEE NOTE D 4.32 MIN 5.21 MIN SEE 10.41 9.40 DETAIL A □ 0.10 B 0.51 GAGE PLANE NOTES: UNLESS OTHERWISE SPECIFIED A) THIS PACKAGE CONFORMS TO JEDEC, TO-252, ISSUE C, VARIATION AA. B) ALL DIMENSIONS ARE IN MILLIMETERS. (1.54) ALL DIMENSIONS ARE IN MILLIMETERS. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994. HEAT SINK TOP EDGE COULD BE IN CHAMFERED CORNERS OR EDGE PROTRUSION. PRESENCE OF TRIMMED CENTER LEAD IS OPTIONAL 1.78 1.40 E) 0.127 MAX

Figure 19. TO252 (D-PAK), MOLDED, 3 LEAD, OPTION AA&AB

IS OPTIONAL.

DIMENSIONS ARE EXCLUSSIVE OF BURSS,

MOLD FLASH AND TIE BAR EXTRUSIONS.

LAND PATTERN RECOMENDATION IS BASED ON IPC7351A STD

T0220P1003X238-3N.

DRAWING NUMBER AND REVISION: MKT-T0252A03REV8

F)

G)

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

Dimensions in Millimeters

SEATING PLANE

(2.90)

DETAIL A (ROTATED -90°) SCALE: 12X

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative